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Abstract-To complete the fundamental solutions for Biot's theory of dynamic poroelasticity, this
paper is dedicated to the three-dimensional case. The solutions in the Laplace transform domain
are presented and the Green's functions for elastodynamics and steady-state poroelasticity are easily
recovered as the special cases of the present solutions. Both the transient solutions for the limiting
case and for the general case have been derived. Lastly, the variations with time of the solid
displacements and fluid pressure components for the point loads after the arrival of the waves are
studied graphically, the ensuing transient Green's function components are compared with Laplace
transform domain solutions and are found in excellent agreement, except for the limiting case at
later times as have been expected.

INTRODUCTION

In a companion paper (Chen, 1993a), the author has presented a complete set of fun­
damental solutions for two-dimensional Biot's (Biot, 1956a,b, 1962) full dynamic poro­
elasticity both in Laplace domain and in time domain. The solutions in time domain have
been successfully constructed both for limiting case (short time approximation) and for
general full dynamic case.
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to Biot's theory by providing its counterpart for the three-dimensional case. In addition to
their mathematical attributes and the physical significance in revealing insights into wave
propagations in poroelastic media, the time domain three-dimensional fundamental solution
provides a key ingredient, combined with time domain boundary integral representation
(Chen, 1993a), for development of three-dimensional time domain BEM. Such a solution
will certainly hold an upper hand over its corresponding Laplace domain BEM (Chen,
1992; Chen and Dargush, 1993b,c) in solving more complicated problems of dynamic
nonlinear poroelasticity, dynamic soil-structure interaction, seismic wave scattering, earth­
quake engineering, acoustics and biomechanics.

REVIEW OF GOVERNING EQUATIONS

The three-dimensional governing equations for dynamic poroelasticity (Biot, 1956a,b;
Zienkiewicz et al., 1980; Zienkiewicz and Shiomi, 1984) are repeated below for reference.

The first constitutive relation:

(7 .. = AUkkb.+ Il(U· +u··) -apfJ ..lJ ~ IJ r l~.1 1,1 l)

The second constitutive relation:

1
e= aUk,k + QP'

(1)

(2)
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The equilibrium equation:

The generalized Darcy's law:

J. CHEN

(3)

The continuity equation:

(4)

(5)

where i,j = 1,2,3, (Jij is the total stress, p denotes the excessive fluid pore pressure (pressure
is taken as positive), Ui is the displacement of the solid skeleton, Wi denotes the average
displacements of the fluid relative to the solid, Wi = (dwi/dt) is the average relative velocity
of seepage measured over the total area, () represent .the increment of fluid content. The
elastic constants A. and J.l are termed drained Lame constants, K = (k/rO is the permeability
coefficient, while '1 and k denote the fluid dynamic viscosity and the intrinsic permeability
of the solid skeleton, respectively, Pf is fluid density and m = pf/n (Zienkiewicz et al., 1980)
or m = (Pa/n2) + (pf/n) (Biot, 1956a; Bonnet and Auriault, 1985; Cheng and Badmus,
1991), where n is the porosity, Pa is the apparent mass density corresponding to the work
done by the solid phase to the fluid phase due to the relative motion between them. In
addition IX and Q are Biot's parameters accounting for compressibility in the two-phase
material, P = (l-n)ps+npf is the density of the solid-fluid mixture, while PH /; and yare
the density of the solid material, the body force and the rate offluid injection, respectively.
The governing equations in the form of the field equation and the energy equation, which
involves four independent variables Ui andp, can only be expressed in the transform domain.
That is:

~ s ~ ~ ~
Y p .. - -P-1X2SU· .+" = 0~ ~ Q 1,1 I ,

(6)

(7)

where i, j = I, 2, 3, the tilde denotes the Laplace transformation, IX 1 = a. - PfsC,
1X2 = IX-Pfs', PI = p-p}sC, ' = «I/K)+ms) 1 and s is the Laplace transform parameter.

Equations (6) and (7) are nondimensionalized by using the parameters:

and
t

T=-,
pK

(8)

where Cp is the propagation speed associated with waves moving through the porous media
without relative motion between the fluid and the solid phase given as :

Next, we define a dimensionless displacement and pore pressure through:

(9)

p
p= pC;' (10)

and denote
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l (Ita)1* - -."
- 1+21l+ a2Q'

.. - jJ. (ltb)
p - A+2p+x2Q'

Q*- Q (lIe)
- A+2.u+ a2Q'

p* = I, (lId)

p.* _ PI (lIe)'I --,
p

m (llf)m·~-- ,
P

r<:'" = 1. (llg)

The nondimensional form for the field equation (6) and the energy equation (7) is

then:

.- S - fJ r 0r P'I--P-OC~s ..+ = ,
~ ..,I Q* ,A. I~i .

(12)

(B)

where i,j = 1, 2, 3, P, and rare nondimensionalized body force and fluid source injection,
ext. IX~. pT. '''' are defined by :

txt = «1' "'" «-plsC·,

pt = p*_(p!)2S'*,
(. = I

I
--+m*s
K*

(14)

LAPLACE TRANSFORM DOMAIN FUNDAMENTAL SOLUTION

Once again following the same basic steps as shown in the two-dimensional case (Chen,
1993a), an explicit and well-posed three~dimensional Laplace transform domain fun~

damental solution for eqns (6) and (7), which involves the response to suddenly-applied
three point forces and a supplementary scalar source with Heaviside step functions in time.
can be obtained as follows;
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_ _ I
Gi4 = G4i -, (15c)

S

_ I ,F-Az I AZ_A z
G

44
= __ ._I__ e- A" ___ _ .z___ e- A2' (I5d)

4n:r(s Af-Ai 4n:r(s Af-Ai '

where

AZ ,z _ AZ s ajaZs
(16a)1+11.2 - + Q( + (il.+2/l)'

P 2 Z s (I6b)'IA2 = A QC
0

..1,2 _ PIS·
(16c)3 - ,

/l
2

A2 = !!-l~ (I6d)
;'+2/l'

C JI(= ~ +ms , (16e)

at = az = a-Pls(, (16f)

PI = p-plsC (l6g)

and

i,j= 1,2,3, r2 =xi x"

I (xx)
Cij = 4n: ;3 J

,

(17)

Since the fundamental solution must obey radiation conditions, the roots Ai (i = 1,2,3)
in eqns (15), whose real part is negative, must be rejected. Gij is the displacement of the
solid skeleton in the i-th direction due to the unit Heaviside point force in the j-direction,
whereas G4j is the fluid pressure due to the unit Heaviside point force in the j-th direction.
Also C'4 is the displacement of the solid skeleton in the i-th direction due to the unit
Heaviside rate of fluid injection in fluid. And C44 is the fuid pressure due to fluid injection.

It is interesting to see that in eqn (15a), i.e. the displacement generated by a point
force, there are three waves present, namely a diffusive wave associated with e- A

", a pressure
wave associated with e- A2' and a shear wave associated with e- A

" and that the displacements
are cylindrically symmetric around the direction of the force. Careful observation of eqns
(ISb) reveals that the contribution of shear wave associated with e- A

" in the pressure due
to point force is obviously zero. Also there is no shear wave present in the fields G'4' G44
radiated by a fluid point source. Both displacements and pressure due to fluid point source
present a spherical symmetry centred on fluid point source. While pressure due to point
force demonstrates cylindrical symmetry along the direction of the force, and an anti-
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symmetry about the coordinate plane which passes through the force point and is per­
pendicular to the direction of the force (i.e. opposite sign of the values). These facts are
consistent with the results of Burridge and Vargas (1979) and the prediction of Biot
(I956a,b). In the corresponding frequency domain A.I and A,2 are the wave numbers of the
slow compressional waves and fast compressional waves, while A3 is the wave number of
the shear waves.

We may easily verify that each column-vector in the fundamental solution matrix G
possesses a unique singularity at the point x = 0 of the order l/r for three-dimensional case.

Obviously each column ofthe fundamental solution matrix Gsatisfies system equations
(6) and (7) or (I2) and (13). Since the matrix Gis unsymmetrical, as shown by eqns (I5b)
and (I5c), its rows considered as vectors do not satisfy the equations, while Boutin et al.
(1987) derived unsatisfactory results with Gj4 = G4j • Also, errors in Bonnet's (1987) work
have been shown by Dominguez (1991, 1992).

Verification of the solutions
As a stringent test of the Laplace transform domain Green's function eqns (IS), we

now proceed to show that the fundamental solutions of elastodynamics in the Laplace
transform domain and of steady-state poroelasticity can be recovered from eqn (15) by
taking limits.

Limiting case 1 : elastodynamics
For three-dimensional elastodynamics case, let" approach infinity, PI and m equal

zero, eqns (16a-g) yield:

1
,=0, (18a)

IXI = (X2 = (x, (I8b)

PI = P, (18c)

A2 =_P_S2 (I8d)
A+ 2/l '

A, 2 P 2 (18e)
I = A+2/l s ,

A~ = 0, (18f)

A,2 - es2 (I8g)3 - •
/l

Substituting eqns (18) into eqns (15), the fundamental solutions reduce to:

- 1 ( X>X» 1
Gjj(x,s) = 4 C2 abjj-b~ -

1tp 2 r s

G4j (x,s) = 0,

Gj4 (x,s) = 0,

G44(X,S) = 0,

where:

(19a)

(19b)

(19c)

(l9d)

(20a)
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ci = A+2jt,
p

c~ =~.
p

(20b)

(20c)

(20d)

eland c2 are propagation velocities of the pressure (dilatational) and shear
(rotational) waves in the elastic solid, respectively. Equation (19a), after being multiplied
by Laplace parameter s, agrees with Cruse and Rizzo (1968) which is the transform domain
Green's function due to a Dirac delta time function.

Limiting case 2: steady-state poroe/asticity
Now we validate the Green's function, by letting t -+ 00 i.e. s -+ 0, to see if it reduces

to the steady-state poroeleastic fundamental solution. Consider, first, the pressure due to a
unit step fluid injection in an infinite medium at very long times. From eqns (16a-d), when
s -+ 0, we have Ai (i = 1,2,3) -+ O. Thus e-A,r can be expressed in a power series to the first
order in the form of:

(21)

Substituting eqn (21) in G44 of eqn (15d), thus:

. 11 22 22'
= hm-

4
r~«A( -A )(I-Alr)-(A2 -A )(1-1I.2r»

s_O 1[r.. 11.( -11.2

= lim _1_ = _1_ . (22)
s_ 0 41[r' 41[/(r

This is, exactly, the potential flow Green's function. Next, consider the pressure due
to a unit step force in the j-direction in an infinite medium at very long times. Instead of
eqn (21), now e-A,r should be expressed in a power series to the second order of A.;, i.e.

(23)

Similarly, from eqn (23) and Gj4 of eqns (15k), we directly obtain:

Neglecting terms of the third order in AI> i.e. A.t and A~ and noting that :

1
. (XI (X
Im-=-.

s .... o, /(
Equation (24) becomes :

(24)

(25)

(26)
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Equation (26) represents the steady-state displacement field caused by a constant unit
fluid injection. Since:

We directly have:

I' }' 2 ~ )ImG4;(X,t) = lms G;4(X,S =0,
1-'00 3-0

(27)

(28)

The above equation means that all fluid effects vanish at very long times due to a unit
step force in the i-direction. Finally, we consider the displacement in the i-direction due to
a unit step force in the j-direction at very long times. Similarly, substituting eqn (23) in
Gij(x,s) ofeqn (l5a), one obtains:

I (X;Xj b;j) 12 1 (XiXj ~ )13 1 XiXj 14) 1 1 ~-- --- 11.3+- --p" 11.3+--11.3 +--p..2,3, 2,2 I) 2, 471:jt' I)'
(29)

Neglecting all the third and higher order of ~; and with simple algebraic manipulation,
eqn (29) becomes:

lim Gij(x, t) = limsGij(x,s)
1-00 3-0

(30)

since:

Therefore

, 1(1 1 )X;Xj 1(1 1)IbmG;-(x,t)=- ---- --+- -+-- -fJ··
1_00 J 871: jt A+2jt,3 871: jt A+2jt, I)

1 1 [XiXj ]
= 1671:r jt(l-v) 7 +(3-4v)o/j .

Equation (31) is, simply,the Green's function for elastostatics.
This completes the proof.

(31)
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TRANSIENT FUNDAMENTAL SOLUTION (LIMITING CASE-WAVEFRONT FORMULAS)

To return to the real time domain, we now need to invert the Laplace transformations
that were used to obtain equations (15a-d). Since A"A2,A3 are determined by eqns (16)
which are exactly the same ones as in the two-dimensional case (Chen, 1993a), the approxi­
mate expressions for A" A2' A3, and Ai - A~ for s --+ 00 i.e. t --+ 0 can be borrowed directly
from the two-dimensional case without any further work. They are expressed as follows:

Ai-A~ ~ ~3(s+b)(s+c),

where b, C and a3 are defined as:

(32)

I { a,bc=-- --+
, 2 " -

a4
a,=-,

2a3

a2 = ! (_ ! a~ + as),
2 4 a3 a3.

_ (p+a.2m-2a.pt ~)2 4(pJ-pm)
a3 - A+2Jl + Q + Q(A+2Jl) ,

_ [-p+2a.2m-2a.pt a.2(p+a.2m-2a.pt) !!!.-J
a4 - 2 Q(A + 2Jl) + (A + 2Jl)2 + Q2 ,

For diffusive wave and compressive wave:

where

p+a.2m-2a.pt m
a6 = 2+2Jl + Q'

I a. 2

a7 =Q+A+2Jl'

For shear wave:

(33)

(34)

(35)
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1 p}
'Is = -2 2'Km mp-Pf

(
p2 )1/2

~s = 'I; + ( ~) 2 2mp-Pf m K

177

(36)

(37)

In the above, Cd, Cp , Cs denote velocities of diffusive wave, pressure wave and shear wave,
respectively, while '1d, '1p , '15 denote dissipation factors of the corresponding ones. As noted
in Chen (l993a), this approximation is valid for large values of KS. Thus we come to
the conclusion that for the dimensional form of the governing equations, an increase in
permeability coefficient K always results in an increase in dimensional time t, during which
the time domain solution is valid. However, for the nondimensional case, where the non­
dimensional permeability coefficient K is one, the approximate solution is valid only for
small nondimensional time r. With the asymptotic expansion being presented for AI> ..1. 2 , ..1. 3

and Ai - A.~, we now proceed to solve for the time domain three-dimensional tensor Green's
function by using analytical Laplace inversion.

Function Gij
First we consider Gjj i.e. eqn (l5a) the displacement in Xj direction due to point force

in Xj direction. Obviously eqn (15a) is not expressed in terms to which Laplace inversion
could be directly applied. To examine the situation in a different way, we substitute eqns
(16a-g) into (15a), and with some algebraic manipulation, we get:

(38)
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where:
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1 1 ( 1 0(2) 1
d3 = 2. pm-p} Q+ A+2Jl K2

1 1
d4 = - 2. A+2Jl

1 m
d 51 = - 2

2 pm-PI

1 m
d52 = - - 2

2 pm-PI

1 p2
d - _ I

61 - 2K(pm-p})2

1 p}
d62 = 2. K(pm-p})2

e I = 2(A;2Jl)K (b -A:~Jl)
_ 1 (~ -rx

2
m- p +2rxPI)

e2 - 2(A+2Jl) Q+ A+2u

1

e32 = 2(A+2Jl)

1 p
a=- 2

K pm-PI

p}
bl = --------'~..,.....

K(pm-p})2

(39a)

(39b)

Substituting eqns (32), which are asymptotic expressions for A.i - AL and keeping in
mind eqns (34) and (36) we arrive at:

_ {I 1 1
Gij = II (s+a)(s+b)(s+c) +/2 s(s+ a)(s+b)(s+ c) +/3 s2(s+a)(s+b)(s+c)

1 1 1 1
+/4 (s+b)(s+c) +15 s(s+b)(s+c) +/6 (s+c) +17 s3(s+a)

II} -l r { 1 II} 1 -l r
+/s s+/9

S
3 e ,+ 110(s+b)(s+c)+/II S + c +/l2 s ~e I
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(40)

(41)

To invert eqn (40), we first observe the following formula (Abramowitz and Stegun,
1965):

also

(43)
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where 10'/1 is the modified Bessel function for the first kind of order zero and order one
respectively. H(t) is the Heaviside step function and bet) is the Dirac delta function.

Equation (40) can now easily be inverted by the use ofeqns (42) and (43) and employing
convolution theorem and other properties of the inverse transforms, to give:

Gij = I' [P11e-b(t-t) +P12e- c(t-t) +PI3]e-~dtIo(~dJr2 - r2 /d)drH(t- rlcd)
Jr/cd

+ rt
[P 2I e-a(t-t) + P22e-b(t-t) + P23e- c(t-t) + P24 + P25(t-r) + P26 (t-r)2]

J/cd

x e-~dt J ~drlcd II(~dJr2 -r2/d) drH(t-rlcd) + [P 2I e-a(t-r/cd)+P22e-b(t-r/cd)
r2 -rld

+ P 23e- c(t-r/cd)+ P 24 + P25 (t- :J+P26(t- rlcd) 2}-V/CdH(t- rlcd)

+ rl

[P 3I e-b(l-t) + Pne-C(t-t) + P33]e-~ptIo(~pJr2 -r2/c;)drH(t- rlcp)
Jr/cp

+ rt
[P4Ie-a(l-t) + P42e-b(t-t) + P43e-c(t-t) + P44 + P45(t-r) + P46(t-r)2]

Jrlcp

x e-~pt J ~prlcp II(~pJr2 - r2/c;)drH(t-rlcp) + [p4Ie-a(t-r/cp) +P42e- b(t-r/cp)
r2-rlc;

+ P43e-c(t-r/cp) + P44 + P45 (t- :J+ P46(t- rlcp)2Je-~pr/cPH(t- rlcp)

+fe, P51e-~,tIo(~sJr2-r2/cndrH(t-rlc')+ L, [P6Ie-a(H)+P62

2 esrlcs (J 2 2 2 d ( I)+P63 (t-r)+P64 (t-r) ]e-~,t II ~s r -r Ics ) rH t-r CsJr2 -r2/c;

+ [P6Ie-a(t-r/e,) +P62 +P63(t-~)+P64(t-rlcs)2 }-~,r/e'H(t-rICs), (44)

where:

(
-flO )

P l2 = c-b +fll Cd

f1
P 21 = --,--------,-

(b-a)(c-a)

fl
P 22 = (a-b)(c-b)

fl
P 23 = ---"--'----

(a-c)(b-c)

f2 + f3 f7
a(b-a)(c-a) a2(b-a)(c-a) - a3

f2 + f3 +~+ Is
b(a-b)(c-b) b2(a-b)(c-b) c-b b(b-c)

f2 + f3 -~-~-+f6
c(a-c)(b-c) c2(a-c)(b-c) c-b c(b-c)



Time domain fundamental solution-Part II

_ 12 _ (ab+bc+ca)/3 Is 17 I"

P24 - b ( b )2 + b + 3 +J8ac ac c a

181

(45a)

P - 9,
41 - (b-a)(c-a)

91
P42 = (a-b)(c-b)

92 + 93 97
a(b-c)(c-a) a2(b-a)(c-a) - a3

92 + 93 +~+ 9s
b(a-b)(c-b) b2(a-b)(c-b) c-b b(b-c)

91 92 + 93 94 9s
P43 = (a-c)(b-c) c(a-c)(b-c) c2(a-c)(b-c) - -c--b - c(b-c) +96

92 (ab+bc+ca)93 95 97
P44 =-b - (b)2 +b +3+98ac ac c a

(45b)

The physical interpretation of the various parts of eqn (44) is straightforward. The
first three components represent that part of the solution which results from slow com­
pressional wave (diffusive wave or P2 wave) generated at the source, the next three com­
ponents are that part which results from the fast compressional wave (pressure wave or PI
wave) generated at the source, while the last three components are due to the shear wave
(equivoluminal wave) generated at the source. The Heaviside step functions H(t-rlcp),
H(t-rlcd) and H(t-rlc.) represent three wave fronts travelling in the r-direction with
constant velocities of cp (PI wave), Cd (P2 wave), and Cs (8 wave) and arrive at the time
rlcp, rlcd and ric.. respectively. The attenuation of the wave of type Ph P2 and 8 depends
upon the magnitude of tip, tJd and tI.. respectively.
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Function G4i

We now proceed to solve the eqn (ISh). To simplify the analysis, we note that by
substituting eqns (l6a-g) and rearranging terms, eqn (I5h) can be rewritten as:

(

2 3 ) 1Xi S S S _) r
-2" e ll s+eZl +e3~+e4~ +es 12 12,e I

r III - .... 2 III -"2 11'-"'2 .... 1

where

d2 = am-PI

ell = Ham-PI)

e12 = - !(Qlm-Pf)

By using eqn (32) i.e. ,q -).~ = ~3(s+b)(s+c). eqn (46) leads to:

(46)

(47)
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(49a)

(49b)

Inverting the above equation we find after much manipulation that the required
solution is given by:

G4i = P11e-v!ed{)(t-r/cd) +Pt2e-'Idllo(~djt2 -r2jd)H(t-rjcd)

t it+Pl3e-~d'I'(~djt2-r2/cj) H(t-rlcd) + [P2Ie-b(H)
jt2-r2jd r!ed

+P22e-C(H)]e-'Idt ?;'drlcd It (';d j-r2 -r2/d)dr:H(t-rlcd)
j"C 2 -r2jd

+(P2te-b(t-r/cd) +Pne-e(l-r/ed»e-v/edH(t_ rjcd) + [I [P3Ie-b(/-t)
J,!ed

+ P32e-CU-t)]e-'IdlIo(';dj.2 -r2jd) dr:H(t- rjcd) +P4te-'IprfcPb(t-rjcp)

+P42e-'Ipl Io(;pjt2_r2jc;)H(t-rlcp)+P43e-'Ip'I,(c.pjt2 _r2Ic;)

$AS 11:2-0
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x t H(t-rlc )+1' [P e-b(t-t)+p e-c(t-t)]e-~pt ~prlcp
J 2 2 2 P SI S2

t -r Icp rlcp JT 2-r2jc;

X Il(~p~2 - r2jc;) dTH(t- rlcp)+ (PSle-b(t-r/cp)+P52e-c(t-r/cp)e-V/cpH(t_rlcp)

+ i' [P6I e-b(t-t) + P 62e-c(t-t)]e-~ptIo(~pJT2 - r2 Ic;) dTH(t-rlcp),
J,/cp

where:

PI I = i3Cd

P 12 = (f4 - i3"d)Cd

P I3 = i3Cd~d

ilP21 =--
c-b

P41 = 93 Cp

P42 = (94 -93"P)CP

P43 =93Cp~p

91
PSI =-­

c-b

91
P s2 =---+92

c-b

P _ 96 Cp

61 - c-b

P62 = ( - C~b +9s )cP ' (51)

Comparison of eqn (50) with eqn (44) demonstrates that the contribution of s-waves
in the pressure due to point force is obviously zero. Additionallyeqn (50) reveals that there
are two pulses, which take the form of delta function and correspond to the arrival of
pressure wave and diffusive wave, appearing in excessive pore fluid pressure due to point
force.

Function G;4

Now turn to (;;4' since:

(52)

For this situation, using eqn (48), we obtain:
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_ 1 1 I I I
Gi4 = II s(s+b)(s+c) e-.l" +/2 S(S+C) e-.l" +/3 ~e-.ll'+/4 S~e-.ll'

I 1 I I I 1
+15 S(S+C) ~e-.l" +/6 s(s+ b)(s+C) ~e-.l" +gl s(s+b)(s+C) e-.l

2
' +g2 S(S+C) e-.l

2
'

1 11 11 1 1
+g3 _e-.l 2r +g4 - _e-.l2r +g5-- _e-.l2r +g6 e-.l2r , (53)

22 s 22 s(s+C) 22 s(s+b)(s+c) 22

where/l'/2' ... '/6, g\>g2, ... ,g6 have the same values as in eqns (49). Taking the Laplace
inversion of eqn (53), one obtains:

Gi4 = Plle-~dllo(edJt2-r2/d)H(t-r/cd)+ \1 [P2I e-b(I-T) +P22e-C(I-T) +P23 ]
J,/Cd

x e-~dt J :d
r
/
c
: 2II (edJr: 2-r2/d) dtH(t-r/cd)+(P21 e-b(I-r/cd)+ P22e-c(I-r/Cd)+P23 )

r: -r /Cd

x e-v/cdH(t-r/cd) + \1 [P3Ie-b(l-t) +P32e-C(I-T) +P33]e-~dT
J,/Cd

x Io(edJr: 2-r2/d)dr:H(t-r/cd) +P4Ie-~pllo(epJt2-r2/c; )H(t-r/cp)

+ \1 [P5Ie-b(I-T)+P52e-C(I-T)+P53]e-~pT epr/cp II(epJr: 2-r2/c;)
J,/cp J r: 2 - r 2/c;

x dr:H(t-r/cp)+ (P5I e-b(l-r/cp)+P52e-c(I-'/cp)+P53)e-~pr/cpH(t-r/cp)

+ \1 [P61e-b(I-T)+P62e-C(H)+Pde-~pTlo(epJr:2-r2/c;)dtH(t-r/c p) (54)
J,/cp

where:

P II = 13Cd

II
P 21 = b(b-c)

P22 = _ II 12
c(b-c) C

P23 =/1 +/2
bc C

16Cd
P31 = b(b-c)

P32 = (_ 16 _ 15)Cdc(b-c) c

P gl
51 = b(b-c)

P gl
52 = - c(b-c)

g2
C
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g6Cp

P61 = b(b-c)

P
62

= ( _ _ g_6 _ 9S)C
c(b-c) c P

(55)

Like eqn (50), in the displacement field due to point fluid injection, there are only two
dilatational waves. Since the displacement is finite, no pulse term appears in eqn (54).

Function G44

It is possible to write the eqn (l5d) in the alternative form :

where:

d l = :2(b+ A:~J
_ 1 (2m 2rx

2
m-2rxPf - P)

d2 - K Q + A+2Ji

m1 fX
1m 2 -m(p+2rx.pf)+2p}

d3 =Q+ A+2p .

Putting At - A.~ = ~3(S+ b)(s+c), in eqn (56) we therefore find that:

where:

I (d3 )1 =- -+m
I 8nr ~3

I I
11 = 8nr ~

(56)

(57)

(58)
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g, ~ - 8~'(J., -m)
1 1

9z=-­
8nr K

1 dz-d3(b+c)
93 = - 8nr j;J3

1 d1-dzb+d3b
Z

94 = - 8nr j;J3
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(59)

Applying the Laplace inversion theorem, the required solution is easily found to be :

1
G44 = Plle-~dl1J(t-r/cd)+Pl2e-~dl I1(edjtZ-rz/d)H(t-r/cd)

jtZ-rz/d

+ II (P l3e- b(t-t) +P 14e- e(l-t) +P 15)e-~dt edr/Cd
r/ed jtZ-rZ/d

x I.(edjt Z- rZ/d)dtH(t-r/Cd) + (P 13e- b(t-r/ed)+P I4e-e(l-r/ed) +P 15 )

I
x e-v/edH(t - r/Cd) +PZ1 e-~pl1J(t- r/cp ) +P22e-~pl---;=:===::==::

jtZ-rZ/c;

x II(epjt Z-rZ/c;)H(t- r/cp)+1
/

(P Z3e- b(l-t) +PZ4e-e(l-t) +PZ5)e-~pt
r/ep

where

P13=~
c-b

P l4 =f3-~c-b

94P23 =--
c-b

94
PZ4 =93--­

c-b

PZ5 = 9z·

(60)

(61)
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Both eqn (54) and eqn (60) reveal that there is no shear wave in the field radiated by
a fluid injection, while both eqns (50) and (60) show that in the pressure field there are two
pulse terms due to the arrival of PI wave and P 2 wave.

TRANSIENT FUNDAMENTAL SOLUTION (GENERAL CASE·APPROXIMATE GLOBAL
FORMULAS)

In the previous section A.t, ..1. 2 , A.) and A,i-A.~ are approximated in powers of lis (or
IlKS) to a second order polynomial. Thus the transient fundamental solutions obtained
constitute a good approximation to the exact results for short time or large permeability.
In order to find the approximate solutions valid for the general case, an alternative approach
is pursued. The inspection ofeqns (16) shows that ..1."..1.2 ,..1.) and A.i-A,~ are defined by the
same equations as in the two-dimensional case (Chen, 1993a), thus an approximation in
terms of small nondimensional functional parameter i.e. IsI«(l/"m) +s)1 < I, which holds
for all s and as sdecreases (i.e. tincreases) IsI«IIKm) +s)1 « I dominates, can be introduced
again following Chen (1992, 1993a). We arrive at:

A.i-A.~ ~ cs(s+b),

where

(62)

m(A,+2J.l+1X2Q)
c = ----::-:-:-----::-c:---

Q(A. +2Jl)

cb = (A.+2Jl +1X
2
Q) ,

Q(A. +2Jl)"

P+ 2IXPI QIX2(p - 2IXPI)
A,+2Jl+1X2Q + (A.+2Jl)(A.+2Jl+1X 2Q) '

(63a)

(63b)

by the same way and by use of radiation condition, we obtain, from eqns (16):

where:

YIp = ~p ~ 0

1 A.+2Jl+1X2Q
Yld = ~d = -- -----------------=---

2Km 2 PI 2 P Q
A.+2Jl+1X Q-2IXQ- +IX Q-, 2 2Qm mll,+ Jl+1X

which result can also be expressed as :

(64)

(65a)

(65b)

(65c)

(65d)

(65e)

(65f)
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'1p = ~p = 0

where a4, a6' a7 are defined in eqns (33) and (35). Similarly, we deduce that:

1 [ '1.s ]A3 =- s+-- ,
c. 6'1.+S

where

c. = 1 ~
l-! p} -VP'

2 pm

1 p}
'1. = -2- 1 2'

Km mp- 2PI

2pm
6=-2--1.

PI
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(65g)

(66)

(67a)

(67b)

(67c)

Armed with these alternative approximations for A[,A2,A3 and Ai-At which gives a
technique for handling difficulty in treating the physical domain Green's function for the
general case, and together with familiar Laplace transform formulas, we start to investigate
the desired real-time fundamental solution.

Function Gij
Equation (38), which has been deliberately recast for approximation, is an exact

expression for Gij in transform domain, where all the constants a, d[, d2, d 3, d4 , ds[, d S2 '

d6h d62 , e[, e2, e3[, en, b[, b2 are the same as defined in eqns (39).
Substituting from eqn (62) into eqn (38) and bearing in mind eqns (64) and (66), with

some algebra leads to :

where

(68)

d=_l
Km

II = _ Aijdl

C
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B"e2
fll = __'_1-

C

(69)

Now we can invert eqn (68) to arrive at the following transient solution:

Gij = il
[P11e-b(t-r) +Pde-vlo(~djr2 -r2/d)drH(t-rlcd)

rlcd

+ {P21e-a(l-rlcd) +Pne-b(l-rlcd)+P 23 +P 24(t- rlcd) +P2S(t- rlcd)2}

x e-VICdH(t-rlcd) +I' {P2I e-a(t-r) +Pne-b(I-r) +P23
rlcd

+P24(t-r) +P2S(t-r)2}e-~dr ~drlcd II(~djr2 - r2lc; )drH(t-rlcd)
jr2- r2 /d

+ {P3Ie-a(t-rlcp) +P32e-b(l-r/cp)+P 33 +P34(t- rlcp ) +P3S (t - rlcp )2}

x H(t-rlcp ) +1
/

{P4I e-a(t-r) +P42e-d(t-r) +P43 +P44(t- r) +P4S(t-r)2}
rlc,t

r(r-rlc.)) drH(t-rlc
s

)

Cs

+ {P4I e-a(t-r/c,J +P42e-d(l-rlc,) +P43 +P44(t-rlcs )

+ P45(t - rlcs )2}e-VICB(t- ric,,)

where:

(70)



Time domain fundamental solution-Part II

II 12 + 13 14
P21 = a(a-b) a2(a-b) a 3(a-b) - a3

11 12 13 16 17
P 22 = - b(a-b) + b2(a b) b3(a-b) +15- b + b2

II 12(a+b) 13(a3_b3
) 14 16 17 r

P 23 = ab a2b2 + a3!J3(a-b) + a 3 + 7; - b2 +J8

12 13(a+b) 14 17
P 24 =- --+-

ab a2b2 a2 b

P =~+/4 +/9
25 2ab 2a 2
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P gl g2 g3 g6 g7
32 = - b(a-b) + b2(a-b) b3(a-b) +g5- b + b2

P _ gl g2(a+b) g3(a3 _b 3
) g4 g6 g7

33 - ab - a2b2 + a3b3(a-b) + a3 + b - b2 +g8

P _ g2 g3(a+b) g4 g7
34 - ab - a2b2 - a 2 + b +g9

P =~+g4+glO
35 2ab 2a 2' (71a)

(71b)

Looking now at eqn (70), we observe that the Green's tensor G/j splits up into three
waves: diffusive, pressure wave and transverse wave with speeds Cd, Cp , Cs and viscous
dissipation factors rJd' rJp , 'I.. respectively; obviously, no pulse terms exist in eqn (70).

Function G4/

The exact expression for G4/ can be found in eqn (46). We obtain-on introducing
Ai-A~ ~ cs(s+b) into this relation and keeping in mind AI ~ (l!Cd)J(S+rJd)2-eJ,
..1. 2 ~ (s!cp)-the following approximate expressions for G4/:

(72)
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where

J. CHEN

I Xi d2
41l(l+21L) r 3 e-

12 = _ I Xi d ,

41l(l+21l) r 3
C

I Xi
92 = 41l(l+ 21L) r2 e22

C
p

(73)

It is now possible to perform the inverse Laplace transformation. Thereafter, making
use of the theorem of convolution and taking into consideration other Laplace transform
properties, and, after a Laplace transformation is taken, we have the following solution:

G4i = (Plle-b(t-rlcd)+PI2)e-~dr/cdH(t_r/cd)+ (I (Plle-b(t-t)+PI2)
J/Cd

xe-~dt edr/cd -II(edjr2-r2/cJ)drH(t-rlcd)+ (I P21e-b(t-t)e-~dt
jr2 -r2/cJ Jrfcd

x Io(edjr2-r2/cJ) drH(t-r/cd) +P22e-V /Cdb(t-r/cd) +P23e-~dt

x Io(edjt2- r2/cJ )H(t-r/cd) + P24e-~dl II (edjt 2_r2/cJ) t
jt2 _r2 /cJ

x H(t- r/cd) +P3I e-b(t-r/cp ) H(t-rlcp)+P32H(t-rlcp) +P33b(t-r/cp), (74)

where:

12
P 12 = b

P23 (-/3t1d+/4)Cd

P24 = 13Cded< (75)

The solution consists of two waves: the first compressive wave and the second com­
pressive wave. Two pulse terms appear due to the arrival of PI wave and P 2 wave.
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Function Gi4

Since:

From eqn (72) we directly write Gi4 as:

193

(76)

where /1> /2, /3, /4, /5,91> 92, 93, 94 take the same values as eqn (73). After an inverse
Laplace transform performed on eqn (76) we find that:

G
i4

= [Plle-b(l~rlcd) +P12 +P I3 (t- r/Cd)]e-VlCdH(t-r/Cd) +1' [Plte~b(I-<)
rlcd

edr/Cd (J 2 2 2) / )+Pt2+Pt3(t-r)]e-V It ed r -r /Cd drH(t-r Cd
Jr 2 -r2/cJ

+ I' [P 2I e-b(H) +Pde-~d<Io(edJr2 _r2/d)drH(t-r/Cd)
rjcd

+ P23e-~dIIo(edJt2 -r2/d)H(t-r/Cd) + (P31e-bU-rlcp) +P32

+Pdt-r/cp»H(t-r/cp),

where

(77)

This once again predicts the existence of two dilatational waves.

(78)

Function G44

Now we shall apply the Laplace inversion on eqn (56). To that end, we put in eqn (56)
A.i-A.~ ~ cs(s+b), and bearing in mind A.) ~ (l/Cd)J(S+"d)2-e~, .1.2~ s/Cp, we arrive at:

(79)
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where:

J. CHEN

fl =~+~ gl =~-~
8nr 8nrc 8nr 8nrc

I
g2=~­

8nrK

(80)

Inverting this result by means of the Laplace transform for the above well-posed
approximate equation, we obtain the solution:

I
G44 = Plle-~dt{)(t- rjcd) +PI2e-~dt II(~djt2 - r 2 jcJ)H(t- rjcd)

jt2-r2jcJ

+ I' (P I3 e-b(I-<) +PI4)e-~d< ~drjcd II(~dj~2-=;2;a)
J,/Cd j r 2

- r 2 jd
x drH(t- rjcd) + (P I3 e-b(l-r/cd)+PI4)e-V/CdH(t -rjcd)

+ P21 {)(t - rjcp ) + (P 22e-b(t-r/cp ) +P23)H(t - rjcp ) , (81)

where:

(82)

Obviously, the shear wave disappeared in the pressure field due to fluid injection.

NUMERICAL RESULTS

We now wish to examine the accuracy of the analytical transient Green's functions for
both the limiting case and the general case. Naturally, the simplest way is to compare the
analytical results with those obtained by an accurate numerical inversion of the Laplace
transform solutions presented in eqn (15). All plots are presented nondimensionally.

Numerical results for the limiting case
Following the definition of nondimensional parameters of eqns (11), the material

parameters for Berea sandstone (Yew and Jogi, 1978; Burridge and Vargas, 1979) will
be recast in nondimensional form as follows: A* = 0.1715, /1* = 0.3007, Q* = 0.3742,
p* = 1.0, pj = 0.4325, m* = 2.3006, K* = 1.0, 0( = 0.779.

Figures (1)-(4) depict the three-dimensional fundamental solution components G;;,
Gi4 , G4;, G44, where i, j = 1,2,3 for the limiting case (early time solution). We assume that
the applied force point (or fluid source point) is located at (0,0,0), the receiver is chosen at
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nondimensional coordinate (0.1,0.15,0.2). The nondimensional velocities ofthe three waves
are approximately cp = 1.0 (pressure wave or PI wave); Cd = 0.368 (diffusive wave or P2

wave) and Cs = 0.572 (shear wave). Thus, they arrive at the receiver (0.1,0.15,0.2) at
tp = 0.268 (pressure wave), ts = 0.471 (shear wave), and td = 0.732 (diffusive wave). All
three arrival times can be detected on Figs (1) by sudden changes appearing in the dis­
placement due to the point force. Only two arrival times, corresponding to the first com­
pressional wave and second compressional wave, can be identified on Fig. (2) by sudden
changes in displacement in the x2-direction due to point source injection, and by two pulses
appearing in the excessive pore fluid pressure on Figs (3) and (4) due to point force in the
x2-direction and point source injection, respectively. These pulses take the form of Dirac
delta function (j(t-rjc). It is of some interest to examine the values of dissipation factors
of the three waves. They are I1d = 0.2336 (diffusive wave), I1p = 0.00294 (pressure wave),
I1s = 0.0192 (shear wave). This confirms Bioi's finding that the waves of the second kind
(diffusive wave with large value of I1d) are highly attenuated and the waves of the first kind
are true waves (pressure wave with negligible small value of "Ip )'

In order to examine the accuracy of the analytical solutions, all the figures are plotted
as a comparison with the results of the numerical inversion of the Laplace transform
solutions. The comparison demonstrates that the analytical solutions can capture the salient
nature and characteristics of waves in porous media near the arrival time. However, as
predicted earlier, the accuracy of the analytical solutions deteriorates and deviates as time
increases. Fortunately the drawbacks of this early time solution were overcome by a
companion solution for the general case, which is to be studied graphically next.

Numerical results for the general case
The material parameters for Pecos sandstone (Yew and Jogi, 1978; Burridge and

Vargas, 1979) are recast in nondimensional form as follows: A* = 0.1286, It* = 0.2746,
Q* = 0.4679, p* = 1., pj = 0.4399, m* = 2.256, K* = I., IX = 0.83.

Figures (5)-(8) depict the three-dimensional fundamental solution components for the
general case. The applied force point (or fluid source point) is located at (0,0,0) and the
receiver is chosen at nondimensional coordinate (1,2,3). The nondimensional wave vel­
ocities are approximately cp = 1.0 (pressure wave or PI wave); Cd = 0.3918 (diffusive wave
or P2 wave); Cs = 0.5475 (shear wave). In view of the above, the nondimensional time
required for the three waves to reach the receivers are tp = 3.7417 (pressure wave),
ts = 6.8344 (shear wave), and td = 9.5488 (diffusive wave). In all the figures, excellent
agreement of analytical solution and numerical Laplace inversion is seen.

Figures (6)-(8) clearly demonstrate the existence of two wave fronts (PI wave and P 2

wave); these fronts propagate with speeds cp and Cd, respectively. An interesting feature is
the presence of two pulses in those Green's functions which define the pressure due to point
force or point source injection, as illustrated by Figs (7)-(8). These pulses, in the form of
the Dirac delta function for the three-dimensional case, are associated with the arrival of
the two dilatational waves.

Figures (5a) and (5b) indicate that the displacement component of Green's function
due to point force contains three wave fronts, two dilatational waves and one rotational
wave. They propagate with speeds cp (pressure wave), Cd (diffusive wave) and Cs (shear wave),
respectively. Analytical solutions for the general case have shown that the propagation of
the fast wave (PI) is characterized by nearly compatible deformations of the solid and fluid
phases; very little viscous attenuation is induced with practically negligibly small dissipation
factor I1p~ O. This strongly confirms Biot's (1956a,b) finding that the waves of the first kind
are true waves, the dispersion is practically negligible. Therefore the PI wave can be detected
in the far field as well as the near field of the source. The propagation of the slow wave
(P2 ) is characterized by the fluid and solid dilatations being nearly 180 degrees out ofphase
and the propagation is strongly attenuated with a high dissipative factor I1d = 0.242, and
hence it can be detected only at a close proximity of the source. As the disturbance moves
into the media, the second wave front slows down and eventually disappears. The dissipative
factor 11" = 0.0199 for the shear wave is much smaller than for the P 2 wave. Obviously the
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Fig. I. Three-dimensional displacement time history at ~ = (0.\,0.\5,0.2) due to point force at
(0,0,0).
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attenuation enters through the inclusion of a damping term in the original equations due
to the difference of solid and fluid velocities.

We turn next to the discussion of the interaction between the wave propagation and
diffusion process. The fact that no diffusion takes place before the arrival of Pz wave and
it starts right after the arrival of Pzwave is evident from Figs (7) and (8). This is primarily
due to high viscous attenuation of Pz wave which is in the nature of a diffusion process,
and the propagation is closely analogous to heat conduction or related to consolidation.

An inspection of the two-dimensional Green's function plots in Chen (1993a) and the
three-dimensional plots in this work reveals that there is a significant difference between
the two cases, i.e. the response in three dimensions exhibits no tail, which do exist in the two­
dimensional case, when plotted with respect to time. The reason for this phenomena is that
in the three-dimensional case, the impulse at the origin reaches a specified receiver in the
domain and is gone, thus immediately thereafter the response starts to decrease. In the two­
dimensional case, the disturbance keeps reaching the receiver and the response continues
to exist after the arrival or the first disturbance.

CONCLUSION

A complete set of closed form transient fundamental solutions are constructed for
Biot's three-dimensional full dynamic poroelasticity. Verification of the solutions is per­
formed by comparing with Laplace transform domain solutions. Excellent agreement is
found for the solutions to the general case, while solutions to the limiting case can capture
the salient characteristics of the waves at early time. This leads to the following conclusions:
the transient Green's functions presented in this paper and a companion paper (Chen,
1993a) may be used effectively as kernal functions of the time domain boundary element
method.
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